

How nanophotonics can speed up photon detection

P. LECOQ

I3M, Centro Mixto CSIC—Universitat Politècnica de València, Spaim

Multiwave Metacrystal S.A., Geneva, Switzerland

CERN, Geneva, Switzerland

Main motivation: TOF-PET

GE-Discovery D690TOF 2011 500ps TOF resolution

Courtesy of J. Prior, CHUV, Lausanne

13-15/06/2022

$$SNR_{TOF} = SNR_{non TOF} \cdot \sqrt{\frac{D}{c * CTR}}$$

PET Effective sensitivity scales like the square of the SNR gain

For whole body PET with FOV D = 40cm

 $\text{CTR=200ps} \rightarrow \text{SNR}_{\text{gain}} \text{=} 3.5 \rightarrow \eta_{\text{eff}} \text{ X 12.5}$

 $\mathsf{CTR}\texttt{=}100\mathsf{ps} \rightarrow \mathsf{SNR}_{\mathsf{gain}}\texttt{=} 5.2 \rightarrow \eta_{\mathsf{eff}} \, \mathsf{X} \, \mathsf{25}$

CTR=10ps \rightarrow SNR_{gain}= 16 \rightarrow η_{eff} X 250

The Detection Chain

The 3 generations of Metacrystals

Ultimate CTR for small LSO:Ce,Ca

2x2x3mm³ LSO:Ce,Ca

 $\tau_{\rm d}{=}41 {\rm ns}\;(100\%), \tau_{\rm r1}{=}5 {\rm ps}\;(78\%), \tau_{\rm r2}{=}306 {\rm ps}\;(22\%)$

Clue coupling LTE = 68%

S. Gundacker, CERN

The Quantum Silicon Detector From EU funded project ATTRACT PHOTOQUANT

PI M. Salomoni

To bring the SPTR of the fastest SiPMs today from 70ps (FBK NUV HD) to 10ps

Transformation optics light concentrator

S. Enoch, A. Gola, P. Lecoq, A. Rivetti, **Design considerations for a new generation of SiPMs** with unprecedented timing resolution, 2021 JINST 16 P02019

QSD microcell structure

Challenge

- Increase light-sensitive area to above 90% of cell area
- Reduce time jitter in charge collection and multiplication
- Reduce capacitance and noise at the microcell level

Solution

- Very small microcells (4-5 µm)
 - Also good for radiation hardness
- Microcell functions separated in two distinct regions
 - Charge collection region with focusing Electric field and saturated electron drift velocity
 - Avalanche region restricted to the center of the microcell

Transformation Optics Light Concentrator

Challenge

- Electrical and optical isolation
- of the microcells
- \rightarrow Microcell Fill Factor in SIPM

- E field inhomogeneity at the border of the microcells

M. Nemallapudi et al., Singly photon time resolution of state-of-the-art SiPMs, 2016 JINST 11 P10016

Solution

- Concentrate light in the central region of microcells
- Hyperbolic Metamaterial (HMM) hyperlenses
- Gradient index GRIN lenses

GRIN light concentrator PoC

Designed and fabricated $4x4\mu m$ Nb₂O₅ metalens with refractive index gradient introduced by holes of varying diameter

93% of incident light concentrated In < 1 μ m spot diameter or <5% of total area

E. Mikheeva et al., CMOS-compatible all-dielectric metalens for improving pixel photodetector arrays, Accepted in APL Photonics

13-15/06/2022

Metalens array (Hamamatsu)

S. Uenoyama, R. Ota, 40 x 40 Metalens Array for Improved Silicon Photomultiplier Performance,

ACS Photonics, DOI:10.1021/acsphotonics.1c00257, May 2021

13-15/06/2022

electron-hole pair generation

Resonant plasmonic states in photonic crystals

Fabry-Pérot resonances

Guided-mode resonances

Hyperbolic Metamaterials

HMM for precise location of eh pair generation

Challenge

- Angular and wavelength distribution of incident photons
- ightarrow variable depth of eh pair generation
- → efficiency losses and timing jitter in the development of the avalanches

Solution

- Locally increase the photonic density of states (PDOS) in the structure by means of HMM
- \rightarrow Huge local increase of absortion coefficient and eh pair creation
- Backup solution 1: Near Zero Index Metamaterials (NZIM)
- Backup solution 2: Metasurfaces

HMM : Photonic Density of States

HMM : Highly anisotropic material with opposite signs electric and magnetic permitivity

Isofrequency contour from dispersion formula: $k = \frac{2\pi}{\lambda} \sim \omega \frac{n}{c} \sim \omega \sqrt{\epsilon}$

Hyperbolic dispersion for a hyperbolic material (blue) compared with isotropic material (red)

An intuitive counting procedure in k-space consists of calculating the volume between the isofrequency contours at $\omega(k)$ and $\omega(k) + \Delta \omega$.

Made of a stack of subwavelength metal-

Can support propagation vectors of large

 $D(\omega)d\omega = \frac{1}{(2\pi)^3} \iint dk_{//}^1 dk_{//}^2 \frac{d\omega}{|\nabla \omega_k|}$

dielectric layers

Large density of states

magnitude

•

electron-hole pair generation

Nanostructuring multilayer hyperbolic metamaterials for ultrafast and bright green InGaN quantum wells

160x enhacement in the spontaneous recombination rate across a broadband of working wavelengths accompanied by over 10x enhancement in the QW peak emission intensity

Lu, D., et al (2018).. Advanced Materials, 30(15), 1706411

electron-hole pair generation @ 600nm

Structure: Sliver (yellow), Silicon(bleu), glass (on the Top)

electron-hole pair generation @ 600nm

Mix 1DC_1D_PlotWavelength [Real Part]

electron-hole pair generation @ 600nm

13-15/06/2022

Conclusion- Potential of metamaterials

- By making use of light-management strategies, Nanophotonics provides a playground to make the unimaginable come closer.
- This opens the way to transformation optics (a kind of extrapolation of Maxwell's equations invariance under Lorenz transformation), allowing to envision a distortion of real space that results in a desired functionality:
 - Ultrafast emission
 - Enhanced fluorescence yield through plasmonic resonances
 - Redirect light into preferred directions
 - Electromagnetic cloaks
 - Improve thermal dissipation

In our case, this is a fertile field for developing innovative metamaterial solutions for highly efficient and ultrafast light photoconversion

